Radio and Space Telescopes

Strange Static

- In the 1930's, Bell Telephone Laboratories experimented with using radio waves to make phone calls across the ocean
- The company quickly encountered a problem: a strange hissing noise that would interfere with the transmissions
- Karl Jansky was assigned the task of figuring out the source of the static
- He built a set of wire rectangles that served as antennas
- He realized that the static was coming from the center of the Milky Way
- This discovery launched the new field of radio astronomy

Radio Telescopes

- Radio telescopes use dishes to collect radio waves
- The dishes are the same shapes as the mirrors in reflecting telescopes
- Radio waves bounce off the dish and meet at a single point called the focal point, where a receiver is positioned

Radio Astronomy

- Radio astronomers can look for radio sources during the day
- Radio astronomy can be performed in any type of weather because radio waves pass through clouds as if they weren't there
- Because radio wavelengths are so long, they reach the ground undistorted by the atmosphere

Seeing the Invisible

- Many celestial objects, including some planets, comets, giant clouds of gas and dust, pulsars, and black holes, emit radio waves
- Radio waves can give information about the composition, structure, and motion of these astronomical objects
- Scientists have also developed sophisticated systems that create images from these radio signals in order to "see" the objects in the radio light they emit.

Arrays

Arranged as shown below (gray circles), the 27 dishes have the resolution of a single dish as big as the red circle:

Spaced slightly farther apart, the 27 dishes have the resolution of a dish as large as this red circle:

 To get a clear picture, radio telescopes have to be huge, because radio waves are so large

 A dish 64 meters wide produces an image that is about as detailed as a visible-light image from a small backyard telescope

To create clearer, higherresolution radio images, several smaller telescopes or dishes are often combined to form an array

 Together, the dishes act like a single telescope as large as the diameter of the array.

Very Large Array

The Very Large Array (VLA) in New Mexico has 27 individual radio dishes laid out in a Y shape. The dishes can be moved closer together or farther apart to achieve different resolutions. When they are at their farthest apart, the array has a resolution equal to a single dish that is 22 miles (36 km) in diameter

Computers

- Computers make radio arrays possible
- Computers process the signals from the many dishes and combine them into one signal
- The technique of combining the signals from several telescopes is called interferometry