\qquad

Sizes and Distances in the Universe

Example:
Using a scale in which a quarter represents Earth, what would the distance from Earth to the moon be?
diameter of quarter $=1$ inch
diameter of Earth $=8,000$ miles
distance from Earth to Moon $=240,000$ miles
$\frac{\text { diameter of quarter }}{\text { diameter of Earth }}=\frac{\text { scale distance (d) }}{\text { distance from Earth to Moon }}$
Solve:

Helpful Measurements:

$1=10^{0} \quad 10=10^{1} \quad 100=10^{2} \quad \quad 1000=10^{3}$
diameter of a penny $=0.75$ inch
diameter of Earth $=8,000$ miles
diameter of Sun $=861,000$ miles
1 mile $=5,280$ feet
distance from Earth to Sun $=93$ million miles
diameter of a basketball $=12$ inches
distance from Neptune to Sun $=2.79$ billion miles
1 light year $=6$ trillion miles
distance of nearest star Proxima Centauri $=4.2$ light years
distance of Sun from the center of the Milky Way $=30,000$ light years
length of football field $=100$ yards $=300$ feet
distance to the Andromeda galaxy $=2.2 \times 10^{6}$ light years
distance of farthest known galaxy $=13$ billion light years
Milky Way galaxy $=100,000$ light years across

\qquad
Problems:
If Earth were the size of a penny..

1. How large would the Sun be?
2. How far away would the Sun be?

If the Sun were the size of a basketball...
3. How far away would Neptune be from the Sun? (answer in feet)
4. How far away would the nearest star, Proxima Centauri, be from the Sun? (answer in miles)
5. How far would it be to the center of the Milky Way? (answer in miles)
6. About how many trips to the Moon does this distance equal?

If the Milky Way were the size of a football field...
7. How far away would the Andromeda galaxy be? (answer in miles)
8. How far would it be to the farthest known galaxy? (answer in miles)

Questions

1. What is the value of using exponents?
2. Why is it impossible for scientists to measure stellar distances that are accurate to within a few feet? Why is it not critical to attain such accuracy when dealing with astronomical distances?
