

Stars

- Each star in the sky is a glowing ball of gas
- Our sun is a medium sized star
- Stars can live for billions of years

Distance

- Parallax (apparent shift) is used to determine a stars distance
- Nearest star - Proxima Centuri
- part of Alpha Centuri
- 4.3 light years or $300,000 \mathrm{x}$ distance to Sun
- Analogy: Sun = marble, Earth = grain of sand 1m away then Proxima Centuri (also marble sized) would be 270 km away (or 168 miles)

Luminosity vs.

Apparent Brightness

- Luminosity-the total energy radiated by a star
- Apparent brightness-the brightness that a star appears to have as measured by an observer on Earth
- Apparent brightness = luminosity/distance ${ }^{2}$
- Two stars of different luminosity can appear
equally bright to an equally bright to an
observer on Earth if one star is more distant

Stellar Size

- Radius-luminosity-temperature relationship
- Knowledge of a stars luminosity and temperature can yield an estimate of a stars radius
- Luminosity $=$ radius $^{2} \mathrm{x}$ temperature ${ }^{4}$
- Giants and Dwarfs
- Giants = 10 to 100 times our Sun
- Supergiant = up to 1000 times solar radius
- Dwarf = comparable to the Sun or smaller

Hertzsprung-Russel Diagram

: $\because: 8$ $\because \because \%$

- Astronomers use luminosity and surface temperature to classify stars
- Note = temperature is decreasing across the bottom to correspond with OBAFGKM classification

Giants and Supergiants

 Red giant-a relatively old stawhose diameter is 10 to 100 times bigger than the Sun

- They are frequently orange in
color
- Betelgeuse is a red giant-it is about 20 times as massive as the Sun about 14,000 times brighter han the Sun, and about 600 light-years from Earth
- Blue giant-a huge, very hot, blue star
- A post-main sequence star that burns helium
- Supergiant-the largest known type of star
- Some are almost as large as our entire solar system

Main Sequence Stars

: :\%:

- Most stars, including the sun
- Fueled by the nuclear fusion of hydrogen into helium
- The hotter they are the brighter
- These stars are in the most stable part of their existence, which generally lasts for about 5 billion years
- Yellow dwarfs-small, main sequence stars
- The sun is a yellow dwar
- A red dwarf-small, cool, very faint, main sequence star whose surface temperature is under about 4,000 K
- Red dwarfs are the most common type of star
- Proxima Centauri is a red dwarf

Faint, Virtually Dead Stars

- White dwarf-small, very dense, hot star that is made mostly of carbon
- These faint stars are what remains after a red giant star loses its outer layers
- Their nuclear cores are depleted
- They are about the size of the Earth (but tremendously heavier)
- They will eventually lose their heat and become a cold, dark black dwarf
- Our sun will someday turn into a white dwarf and then a black dwarf
- Brown dwarf-a "star" whose mass is too small to have nuclear fusion occur at its core
- the temperature and pressure at its core are insufficient for fusion
- A brown dwarf is not very luminous
- Neutron star-a very small, super-dense star which is composed mostly of tightly-packed neutrons
- It has a thin atmosphere of hydrogen
- It has a diameter of about 5-10 miles
- Pulsar-a rapidly spinning neutron star that emits energy in pulses

Binary Stars

- Binary star-a system of two stars that rotate around a common center of mass
- About half of all stars are in a group of at least two stars
- Double star-two stars that appear close to one another in the sky
- Some are true binaries
- Others just appear together from the Earth because they are both in the same line-of-sight

Cepheid Variable Stars

- Stars that regularly pulsate in size and change in brightness
- As the star increases in size, its brightness decreases and then, the reverse occurs
- Cepheid Variables may not be permanently variable
- The fluctuations may just be an unstable phase the star is going through

