The Sky: Constellations

Constellations

In ancient times, constellations only referred to the brightest stars that appeared to form groups.

Constellations

Today, constellations are well-defined regions on the sky, irrespective of the presence or absence of bright stars in those regions.

Constellations

Apparent groupings of stars - relatively fixed positions

Constellations

The stars of a constellation only appear to be close to one another.

Usually, this is only a projection effect:

Constellations

Locating constellations on the celestial sphere is just a convenience - we know that the stars are distributed threedimensionally in space.

Constellations

Stars are named by a Greek letter (α, β, γ)

Constellations

Some examples of easily recognizable constellations and their brightest stars

The Magnitude Scale

First introduced by Hipparchus (160-127 B.C.):

- Brightest stars: ~1st magnitude
- Faintest stars (unaided eye): $6^{\text {th }}$ magnitude

More quantitative:

- $1^{\text {st }}$ mag. stars appear 100 times brighter than $6^{\text {th }}$ mag. stars
- 1 mag. difference gives a factor of 2.512 in apparent brightness (larger magnitude => fainter object!)

0	1
1	2.5
2	6.3
3	16
4	40
5	100
6	250
7	630
8	1600
9	4000
10	10,000
\vdots	\vdots
15	$1,000,000$
20	$100,000,000$
25	$10,000,000,000$

Betelgeuse

Magnitude $=0.41 \mathrm{mag}$:

For a magnitude difference of 0.41 $0.14=0.27$, we find an intensity ratio of $(2.512)^{0.27}=1.28$.

In other words, Rigel is 1.28 times brighter than Betelgeuse.

The Magnitude Scale

Sirius (brightest star in the night sky): $m_{v}=-1.42$
Full moon: $m_{v}=-12.5$
Sun: $m_{v}=-26.5$

Star trails

Apparent Motion of The Celestial Sphere

Looking east, you see stars rising and moving to the upper right (south)

Looking south, you see stars moving to the right (west)

Celestial Sphere: Extension of the Earth's Coordinates

celestial sphere

- N/S celestial poles
- celestial equator

Like a salad bowl over your head!

The Celestial Sphere

Zenith = Point on the celestial sphere directly overhead
Nadir = Point on the c.s. directly underneath (not visible!)

Distances on the Celestial Sphere

Observer

What's up for you?

Coordinates

- Horizon - the plane you stand on
- Zenith - the point right above you
- Meridian - the line from North to Zenith to
 south

...depends where you are!

- Your local sky your view depends on your location on earth

