The Sky: Constellations

In ancient times, constellations only referred to the brightest stars that appeared to form groups.

Today, constellations are well-defined regions on the sky, irrespective of the presence or absence of bright stars in those regions.

Apparent groupings of stars - relatively fixed positions

The stars of a constellation only appear to be close to one another.

Usually, this is only a *projection effect*.

Locating constellations on the celestial sphere is just a convenience – we know that the stars are distributed three-dimensionally in space.

Stars are named by a Greek letter (α , β , γ)

Some examples of easily recognizable constellations and their brightest stars

The Magnitude Scale

First introduced by Hipparchus (160 - 127 B.C.):

- Brightest stars: ~1st magnitude
- Faintest stars (unaided eye): 6th magnitude

More quantitative:

- 1st mag. stars appear 100 times brighter than 6th mag. stars
- 1 mag. difference gives a factor of 2.512 in apparent brightness (larger magnitude => fainter object!)

Table 2-1 | Magnitude and Intensity

Magnitude Difference	Approximate Intensity Ratio
0	1
1	2.5
2	6.3
3	16
4	40
5	100
6	250
7	630
8	1600
9	4000
10	10,000
:	:
15	1,000,000
20	100,000,000
25	10,000,000,000
	:

For a magnitude difference of 0.41 - 0.14 = 0.27, we find an intensity ratio of $(2.512)^{0.27} = 1.28$.

In other words, Rigel is 1.28 times brighter than Betelgeuse.

+ Betelgeuse Magnitude = 0.41 mag

Rigel Magnitude = 0.14 mag

The Magnitude Scale

Sirius (brightest star in the night sky): $m_v = -1.42$ Full moon: $m_v = -12.5$ Sun: $m_v = -26.5$

Star trails

© 2004 Thomson - Brooks Cole

Apparent Motion of The Celestial Sphere

Celestial Sphere: Extension of the Earth's Coordinates

celestial sphere

- N/S celestial poles
- celestial equator

Like a salad bowl over your head!

The Celestial Sphere

Zenith = Point on the celestial sphere directly overhead Nadir = Point on the c.s. directly underneath (not visible!)

Distances on the Celestial Sphere

degrees (°): Full circle = 360°

arc seconds ("): 1[°] = 60"

Observer What's up for you? Coordinates

- <u>Horizon</u> the plane you stand on
- <u>Zenith</u> the point right above you
- <u>Meridian</u> the line from North to Zenith to south

...depends where you are!

Your <u>local sky</u> –

your view depends on your location on earth